RAIN water: towards a MUS approach

MUS Group meeting,
Rome, 24th August 2009

Kirsten Neke
1. The RAIN Foundation - introduction
2. RAIN and Multiple Use water
3. Country programmes

....MUS advise: case study Ethiopia
1. The RAIN Foundation – introduction

RAIN envisions a world in which all people have access to a reliable source of clean water, thereby being empowered to improve their lives through better health, food security and education.
RAIN – beginnings

- Established 2003 in the Netherlands

What does RAIN do:

- Provide access to (safe) water through collection of rainwater
 “water without walking”
- Reach vulnerable sectors; sub-Saharan Africa & Asia
- Focus on sustainable implementation
- Strengthen local capacities – implementation and management
- Support the development of appropriate RWH technology
- Advocacy, gathering & sharing RWH expertise to enable policy & practice: promoting RWH as a viable water supply option
CONCLUSION AND RECOMMENDATIONS

<table>
<thead>
<tr>
<th>STRENGTHS</th>
<th>WEAKNESSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level of satisfaction and acceptability is very high among users</td>
<td>Technology is somewhat costly</td>
</tr>
<tr>
<td>Rainwater offers a great range of benefits</td>
<td>Rainwater cannot fulfill the complete demand of an average Nepali family</td>
</tr>
<tr>
<td>Water quality is good when systems are properly maintained</td>
<td>Involvement of LGB is still low</td>
</tr>
<tr>
<td>O&M cost is low</td>
<td>Disadvantaged households are sometimes left out of the programme</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OPPORTUNITIES</th>
<th>THREATS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical design can be improved</td>
<td>A poor technical design has a direct effect on water quality and sustainability of the system</td>
</tr>
<tr>
<td>Incentives can be given to enlarge the catchments area and the capacity of the tank</td>
<td>Operation and maintenance is sometimes inadequate</td>
</tr>
<tr>
<td>Water reuse should be encouraged</td>
<td>Policy limits the implementation of household level rainwater harvesting programmes</td>
</tr>
<tr>
<td>Self initiation rainwater harvesting systems can be encouraged by increasing market involvement and accessibility to credit</td>
<td>Some spare parts of the systems are not available in the market (nylon mesh, cap for wash pipe, etc)</td>
</tr>
<tr>
<td>Refreshing trainings and awareness campaigns should take place regularly</td>
<td></td>
</tr>
</tbody>
</table>
➢ R&D: appropriate technology

➢ Performance Measurement & Learning (PMLS): measuring impact \(\rightarrow\) improvement

RESULTS:

- 20.800 m\(^3\) RWH storage capacity;
- 2007 - 12.500 people with drinking water;
- 2008 - 18.500 people (> 17.000 m\(^3\))

Working in 5 countries, 33 implementing orgs
2. RAIN and MUS: Opportunities & Bottlenecks

- Beyond drinking water to meet other (water) needs
- Understanding needs, water sources and patterns of use
- Water quality and quantity
- Developing the RAIN model: technical, institutional, financial; ‘beneficiaries’ to ‘clients’; cross-sectorial; land & water management, livelihoods and wellbeing, women, environment

→ Towards upscaling: pilots, planning, partnerships
→ WASH & 3R

not just a small-scale water supply technical package, water efficiency, practical IWRM, water & food security
3. RAIN in Nepal

- BSP and a business model for biogas, microfinance
-and RWH in Nepal: mountains, food gardens
3. **RAIN in West Africa: Mali, Burkina Faso & Senegal**

- Dutch Government key donor – household drinking water
- 3 litres pp/d, dry periods
- “Type 3” areas, rural
3. RAIN in Ethiopia

- ERHA – Ethiopian Rainwater Harvesting Alliance
- Communal drinking water supply
- Swiss Re ReSource project; communal drinking water +
 - Partnerships, Capacity
 - Surface water runoff tanks & sand dams
- Upscaling; Veld & Vecht

→ MUS advise: case study Ethiopia