MUS Approach Application in the context of Climate Change: Department of Irrigation undertaking Pilot Projects to adapt with Climate Change in Nepal

> BASHU DEV LOHANEE, Department of Irrigation INTERNATIONAL MUS WORKSHOP, KATHMANDU, 25-26 Feb 2016

Presentation Organization

Background

Issues of Irrigation System

Study Area

Cropping pattern

Analysis

Conclusion

Background

- Nepal Area 141181 Sq. KM
- Cultivable land 2.6 M hectare
- Irrigable land 1.8 M Ha
- Irrigated land 1.36 M Ha
- MUS could be a tool to increase irrigable land.
- Specially in the hill of Nepal, "Aansu sasto Pani Mahango" Tear is cheaper and Water is expensive. MUS can reduce the tear of women n children of hills of Nepal.

Background

transforming the current subsistence oriented farming system into a commercial and competitive farming system..... (phrase : Vision National Agricultural Policy, 2004)

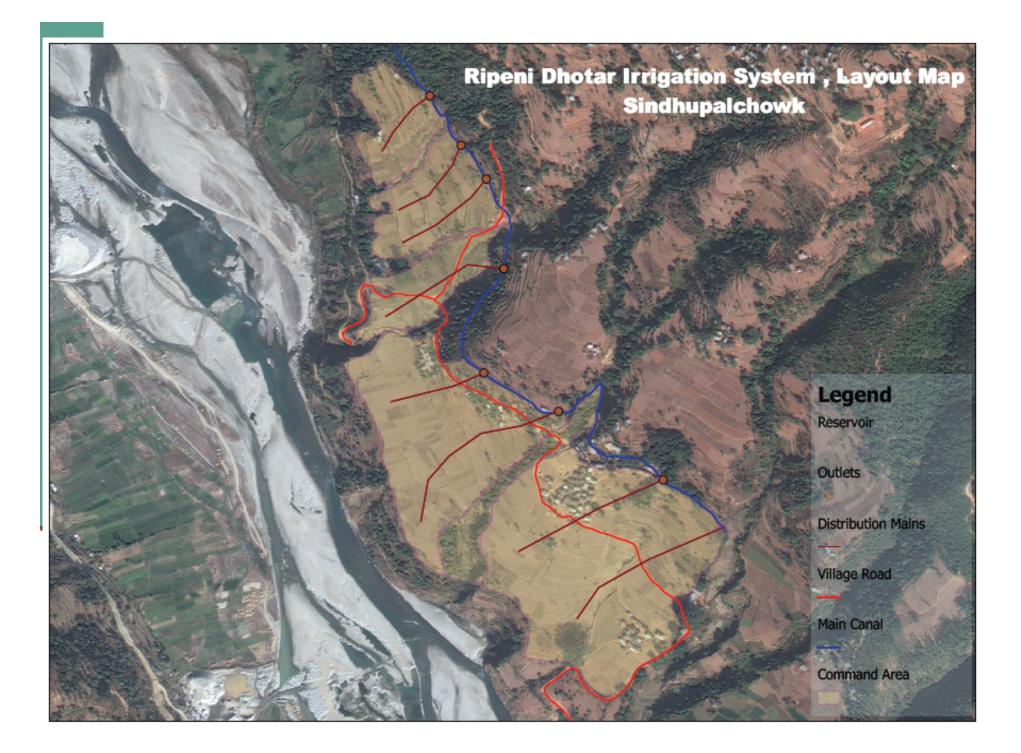
Year round Irrigation to all agricultural land of Nepal is the vision of irrigation policy, 2013

- Providing year round irrigation with high efficiency and reliable supply of irrigation water without damaging physical environment
- Improving crop production and productivity, diversification, intensification/ commercialization/ modernization
- Effective Water management, institutional development

Some issues of the Surface Canal Systems

- Due to low flow in the source during winter and spring seasons, irrigated area is much less than expected/ designed.
- On farm water application method is not efficient (surface) and often it causes soil erosion.
- Water user associations (WUA) lack adequate skill and knowledge on the improved irrigated agriculture and management of the institution.
- Tail end farmers get rare irrigation (around 20% remain unirrigated)

Study Area


- Sub-Project: Ripin-Dhodar ISP
- Location: Bhimtar-3, Sindhupalchowk
- Village / Clusters: Bhimtar, 5 small clusters (Banjhobari, Deehi Chaur, Bahun Tole, Wallo Dhotar and Pallo Dhotar)
- Accessibility: 38 km North-east from Dhulikhel, on the left bank of the Indrawati River
- Household (Population): 120 (730)
- Caste /Ethnicity: Large majority Majhis (82 HH Majhis, 38 HH Others)

Nepal on World Map

Location of Project Site

The command area

Cropping Pattern before project

Upland:

(maize-millet black-gram intercropped)

- April /May- August : Maize
- July November: millet

Low land

(Paddy- Wheat/potato/ mustard)

July- November: Paddy

November-March: Wheat/potato/ mustard Cropping Intensity = 145 %

Cropping Pattern after the project

(Paddy- Vegetable- Vegetable)
July- November: Paddy
October- January: Vegetable (Cabbage)
February- July: Vegetable (Bitter gourd)
Cropping Intensity = 250 %

Highly Participatory

Cost –Benefit Analysis of the Maize-Millet-Black gram cropping pattern per Ropani

Cost	Income
Manure/ Fertilizer: Rs. 1200.00 Seed: Rs. 445.00 Labor: Rs. 2455.00 Harvesting /Storage: Rs. 200 Total : Rs. 4300	Maize : Rs. 4200 Millet: Rs. 1500 Black gram: Rs. 2000 Total: Rs. 7700

Net Benefit: Rs. 3400.00

Ropani is the 1/20 part of a hectare

Cost – Benefit Analysis of Winter Cabbage per Ropani (Season: October- January)

Cost	Income
Manure/ Fertilizer: Rs. 1450.00 Seed/supplements: Rs. 950.00 Labor: Rs. 1600.00 Marketing: Rs. 500 Total : Rs. 4500	Marketable Product 1024 kg @Rs. 15/ kg Total: Rs. 15360
Net Benefit: Rs. 10860.00	

Cost –Benefit Analysis of Bitter gourd per Ropani (Season: February-July)

Cost	Income
Manure/ Fertilizer: Rs. 1200.00 Seed & Supplemental: Rs. 900.00 Labor: Rs. 1600.00 Marketing : Rs. 600 Total : Rs. 4410.00	Marketable Product 1084.8 kg @Rs. 20/ kg Total: Rs. 21696.00
Net Benefit: Rs. 17286.00	

Incremental Benefit per Ropani/yr:

Existing cropping Pattern: Maize-Millet-Blackgram Rs. 3400.00

Vegetable (Cabbage- Bitter gourd): Rs. 10860.00 + Rs. 17286.00= Rs. 28146

Difference= Rs. 24, 746.00/ Ropani-yr

Conclusion

- 1. By increasing efficiency of the irrigation system, saved water can be used for other purpose i.e. domestic or industrial.
- 2. initiative for improving on farm water management and crop productivity.
- 3. easier to control water at different part of the command area due to pipe network.
- 4. highly social inclusive and participatory.
- 5. soil erosion / fertilizer losses greatly minimized (environmental benefits).
- 6. cost benefit analysis indicates that it has a attractive benefit cost ratio.
- 7. project can be replicated in other part of the world in similar condition as a MUS.

Thank you for your Attention

Query, Comments n Suggestions ???