Enabling environment

[Anonymous].  Submitted.  South Africa: putting integrated water resources management into practice (English).


At the advent of democracy in 1994, the ANC government seized the opportunity to formulate policies that could achieve an equitable and sustainable water resource use. Three National Acts were crucial in defining the working rules that dictated the institutional frameworks, as well as which stakeholders interacted over which resources and space;

(i) The National Water Act No. 36 of 1998 became the legal instrument for implementing the national water policy. The Act recognizes that "water is a natural resource that belongs to all people" and places the nation’s water resources in the public trusteeship of the National Government. This Act provides for the establishment of several statutory and non-statutory institutions in designated Water Management Areas and requires the formation of stakeholder participatory institutions, emphasizing the participation of previously disadvantaged rural communities. The Act outlines mechanisms for dealing with over-arching issues of water management across different types of uses and levels.

(ii) The Water Service Act of 1997 deals with water and sanitation services within delineated political administrative boundaries such as municipalities. This Act too provides for the establishment of several institutions that interface with water users, whether individual households (residential users) or industrial users. For instance it provides for the establishment of a Water Services Authority that regulates how water and sanitation services are provided and who provides them.

(iii) The Disaster Management Act of 2000 deals with the management of all manner of disasters including floods and droughts. While the National Water Act and the Water Services Act fall under the armpits of the National Department of Water Affairs (DWAF), the Disaster Management Act falls under the armpit of the Department of Housing, Local Government and Traditional Affairs. Public participation in disaster management at local levels is suggested to happen through ward committees, which lie in the lowest political voting boundaries.

In summary, this policy environment provides for separate institutional avenues for gaining access to water resources in general, to domestic water and sanitation services and to dealing with either excess water (floods) or moisture deficits (drought). In practice, such an environment requires that local communities understand the different institutional channels through which they can voice their concerns. Such multiple institutional environment is generally a source of frustration among community members as the Mthatha case below demonstrates.

Local responses

In response to the National Water Act, two Catchment Management Forums[1] (CMFs) emerged in Eastern Cape Province of South Africa during 1999. The Mthatha Catchment Management Forum (Mthatha CMF) emerged in Water Management Areas (WMA) 12 in the western end of the province (see Figure 1 on bottom page). It took responsibility for the overall management of the Mthatha catchment which is made up of three secondary catchments covering a total area of approximately 5500 km2 and a population of just over half million people of whom 91 percent are rural, living in small and remote villages.

Participation of poor rural communities in the CMF was taken seriously in the formation of both Forums. In Mthatha, in which the process received substantial financial and professional backup from DWAF, public and private media advertisement led to public consultation meetings and the inauguration of a management committee for the Forum. The nomination of a management committee was preceded with a workshop to identify crucial issues to be tackled by the Forum. Some crucial issues identified included the tackling of pollution of the MthathaRiver, domestic water supply needs for rural communities, tackling poverty and land degradation. Socio-economic statistics bear witness to the salience of these concerns; approximately 84 percent of households in the catchment earn less than two US dollars a month (DWAF 2002), the total area under irrigation is estimated at 293 hectares while there is potential in excess of 1200 hectares (DWAF 2002), while the economy of the catchment is dependent largely on livestock farming, with sheep and cattle farming providing a living for rural subsistence farmers, livestock water requirements are met mainly from the limited surface water sources, while substantial groundwater resources play a minor role. The catchment is generally under-developed and the area is characterised by a high degree of unemployment and high poverty levels. Constant outbreaks of cholera in the catchment is evidence of poor access to clean water by the majority of rural communities who depend, for their domestic needs, on water collected directly from the river.

Four years after the formation of the CMF, participation of local people in Forum activities became problematic with complete absence in most meetings of representatives from the 1055 communities that exist in the catchment. This was attributed to fact that the Forum did not address itself to several issues that were of concern to local people, one of which was the improvement of domestic water services to rural communities. The Forum on its part argued that such water concerns lay outside its jurisdiction. The Mthatha Forum, dominated by government and private stakeholder representatives, concerned itself with issues of generating a catchment management strategy and argued that the CMF was only a policy body with regards to water utilisation and quality issues and implementation role was a prerogative of municipalities and other related bodies.

The Kat CMF case study

About 350 kilometers to the west of Mthatha Catchment lies the KatRiverValley catchment falling in Water Management Area 15. The Kat Catchment Management Forum (Kat CMF) which emerged at about the same time as Mthatha became responsible for a catchment that extends approximately 80km north to south and covers an area of approximately 1700km2. It is characterised by a variety of land uses, ranging from export-oriented citrus farming and commercially oriented rangeland stock farming in the lower reaches of the catchment to community-based or small-scale agriculture and stock farming in the middle reaches of the catchment and commercial forestry in the north-western upper reaches (McMaster, 2002). The Kat catchment exhibits similar socio-economic conditions as those found in Mthatha catchment.

Unlike the Mthatha CMF, researchers from a nearby University facilitated the emergence of the Kat CMF.RhodesUniversity researchers undertook anthropological research that resulted into workshops in 17 villages from late 1999 to mid-2000. The aim of these workshops was to create environmental awareness (co-operative and responsible resource management). Upstream-downstream relationships between the villages was role-played and analysed. The awareness creation conducted through Participatory Rural Appraisal methods led to the build-up of the formation of the CMF in which broader issues relating to catchment management could be tackled. Since the focus of RhodesUniversity researchers’ activities was on the empowerment of previously disadvantaged communities, the CMF became dominated by a high representation of community members and the Forum is well rooted into the community structure of the rural KatRiver areas.

The Kat CMF, driven mainly by stakeholders from local communities has addressed itself to a wide range of issues since its inception;

  • It has engaged the local municipality in improving domestic water services in rural communities through boreholes. Rather than leaving these issues to local municipal water service institutions, it has participated in the discussion of these concerns.
  • Through its own initiative, it has accessed funds from the Department of Agriculture to implement a land regeneration project. The project employs local community members, a high percentage being women, to construct water traps across eroded slopes, burying the gullies with stones and planting fast growing plants in denuded landscapes as well as erecting fences around the excessively eroded areas to restrict movement of grazing animals. Sedimentation of the KatRiver from excessive soil erosion is a serious problem. Considering that majority of local people use water directly from the river, this project addresses a salient issue.
  • It has networked and established useful links. One such bilateral relationship has been with Spiral Trust, an NGO concerned with personal transformation and social change. Through this association, workshops for capacity building in diverse skills including small business management have been held in the communities.
  • It is engaging the Department of Agriculture to support groups of small-scale agricultural producers to start irrigation farming.

As result, the support and interest in the CMF among local people in the catchment is growing. Results from an informal survey in the catchment indicated that most local people new about the operations of the CMF specifically because of the land regeneration project which was providing an income to local people.

Lessons learned

The two cases demonstrate that

  • Institutional designs that involve the participation of local poor people require holistic approaches encompassing concerns from bucket to basin, from environment to poverty. Generally, if local community members are allowed or take responsibility to drive the management processes in multi-stakeholder participatory institutions, they are likely to address salient issues as the Kat CMF demonstrated, after all ‘ he who feels it, knows it’.
  • While experts, through their policies, have segregated avenues through which local people could access and manage resources that support their livelihoods, local people have an integrated view of these concerns. ‘S upermarket institutions’ or ‘ one-stop- shop institutions’ that provide holistic approaches to local concerns could be the answer to complex local problems.
  • When community members participate in water resource management by voicing their concerns, they also wish to act on those concerns. Mere dialogue is not sufficient in resolving domestic water concerns.

Specific recommendations for future work

It would be of special interest to study and document how the Kat CMF has been able to circumvent limitation placed on community driven multi-stakeholder institutions, which the Mthatha CMF failed to escape. This form of research could be achieved through a joint workshop between the Mthatha and Kat CMFs in which community stakeholders could engage stakeholders from government and private sector to discuss how productive water concerns at micro-level could be integrated into catchment level management plans. Such a workshop could provide the much-needed social learning among all participating stakeholders.


The author collected information for this case study between 2002 and 2004 as part of a PhD research study using ethnography as a research tool. In addition, an informal survey was conducted in both Mthatha and Kat catchment to establish household livelihood systems. The author is from Fort Cox College of Agriculture in the Eastern Cape Province of South Africa.


DWAF 2002. MtataRiver Catchment Management Strategy. Plan of Action. First Draft . Prepared by Ninham Shand in association with Goba Moahloli & Associates. Department of Water Affairs.

McMaster, A., 2002, GIS in Participatory Catchment Management: A Case Study in the Kat River Valley, Eastern Cape, South Africa. MSc. Thesis., RhodesUniversity.

[1] Catchment Management Forums are a form of multi-stakeholder platforms that deal with holistic water resource management and representing multiple economic sectors, ideally public, private and civil-society interests.

[Anonymous].  Submitted.  Bulgaria: institutional constraints for multiple use of water (English).


Since 1989, societies in the transition countries of Central and Eastern Europe experienced a simultaneous change from a centralized planned to a market-oriented economy and from a communist-determined to a democratic political system. They suffered numerous economic, political, and institutional constraints (Roland 2000). In addition, the agricultural producer cooperatives lost their economic power and their provision of social cohesion in the rural areas. In contemporary Bulgaria, and other transitional economies, the agricultural sector buffers the national economic decline. The recent development of small-scale subsistence farming has turned out to be a strategy, in particular, for the elderly rural population to cope with severe poverty.

The Bulgarian irrigation systems were built to serve large production units during socialism and do not meet the current diversified needs. At present, the facilities have largely deteriorated. Water losses in the irrigation system are estimated to amount to around 70% (Global Water Partnership 2000: 24; 82). The remaining scarce irrigation water resources have to serve multiple and directly competing water user purposes, i.e., subsistence farming including household plots, watering animals, agricultural production, and fish-farming.

Case Study Methodology

The study is based on six months of empirical fieldwork subdivided into three phases spanning two and a half years from 2000 to 2002. In the frame of this study, four village case studies were carried out in the Haskowo region of South-East Bulgaria. The main water source for irrigation is surface water, stored in microdams. Water is brought to the fields mainly via open canal systems. In most cases, farmers divert water from the canals to their fields by primitive gravity irrigation techniques. Two irrigation command areas were selected. In each area, two villages were chosen with one village located directly behind the water dam (top-ender) and the other further back—at the middle or tail-end of the canal and river system.

With the help of explorative and qualitative methods in the first two research phases, I analyzed, among other aspects, the rules-in-use which govern the daily practices of irrigation. I revealed power resources of local actors in the irrigation sector, which were perceived as decisive by the local actors. In the third empirical phase, interactive interview techniques with cue sorts were applied to rank these power resources in descending order (Theesfeld 2004b).

Multiple Water Use

According to different crop structure, size of the plots, and irrigation technology used, the requirements for irrigation water greatly differ between subsistence farmers and agricultural producers. In the case study region, subsistence farmers operate on less than half a hectare in total. The agricultural producers include a small number of midsized farmers operating between 3 to 40 hectares and on average 1 or 2 large tenants, and 1 or 2 cooperative farms per village operating on average up to 300 hectares each.

The water in the canal is not sufficient to serve all users at the same time. There is no ramified canal network and the practiced retaining technique does not allow for simultaneous irrigation. Thus, subsistence farmers who are usually cropping at the tail-end can extract less water from the system.

An additional infrastructure specificity is that subsistence livestock keeping is often supplied by watering livestock from a river. In most cases, river water supply and canal water supply are interdependent. Usually, the water guard at a barrage decides how much water is released into the canal and how much is retrained in the river. Watering livestock will thus subtract resource units from the same water resource that other actors want to use for irrigation.

A specificity in Bulgaria’a irrigation sector in transition is the fish-farming in the water dams. Fish farmers and crop farmers are often in conflict with each other. During the summer, i.e., the fish-growing season, the water level is either kept high for fish-farming or it is released for irrigation purposes. During autumn, the water level in the dam is either reduced to fish out, or the water is stored until the following spring irrigation season. The fish-farming business is part of the Mafia-like structures in Bulgaria. Thus, the microdams are heavily guarded and neither the water users nor the local authorities are willing to begin negotiations on the release of water for irrigation purposes.

Rules Governing Multiple Water Use

According to Ostrom et al. (1994: 37-50), an institutional analysis relevant to field settings requires the understanding of the effective rules, or rules-in-use. The incongruity of formal and effective rules is typical for transition countries and is striking also for Bulgaria’s irrigation sector. Effective water appropriation rules favor some water users and disadvantage other users and, likewise, favor certain kinds of water use. Limited sanctioning and enforcement mechanisms, as well as practically non-existent monitoring, mechanisms provide favorable conditions for opportunistic behavior and unequal opportunities to withdrawal water for different purposes.

Water Ordering and Appropriation Rules

Water users have to put in an advance order with the water guard if they want to irrigate. The formal rule stipulates that the guard must collect a certain amount of orders before he can open the barrage and fill the canal with water. Nevertheless, compliance with this rule varies. The first formal rule – a farmer who orders water and pays in advance has the right to irrigate – does not work in practice. The informal rule appears to be: when the canal is filled, irrigate to be on the safe side, whether or not you have ordered water. Accordingly, the water guard tries to collect the fees afterwards.

As regards fish-farming, formally the fish should not reach a level that would initiate a competition for water between irrigation and fish-farming. Although farmers in one case study village ordered water, the tenant of the water dam did not divert water into the canal.

In addition, the Irrigation System Company state firm (ISC) regional branch offers verbal advice to the water guards in ranking the crops for irrigation. For instance, only the pickles should be irrigated from 5 p.m. to 8 p.m. During the day, priority should be given to eggplants, tomatoes, and peppers. Corn ranks third, as it needs a lot of water. It should mainly be irrigated late at night. Most cases of irrigation practice do not reflect these regulations.

A statement taken from an interview summarizes the second rule-in-use regulating the irrigation sequence: “Whoever is ahead of you at the canal is the first to irrigate. That is the law.” Most of the interviewees described the situation as chaotic. When the canal is filled, a tail-ender faces water shortage as everyone ahead of him irrigates, even though he ordered the water and may have even already paid for it. Subsistence farmers can usually only rent in plots from cooperatives or larger tenants at the tail-end of the irrigation canal, thus being disadvantaged according to the gap between formal and effective rules.

The third rule of irrigation from one canal is specified by physical power. Physical violence among the users of an irrigation system is symptomatic of inadequate assignment of spatial or temporal irrigation slots to appropriators (Ostrom 1992).

Monitoring Rules

There is almost no monitoring system for water appropriation. This situation leads to farmers guarding their fields around the clock. First, farmers wait for the water in the canal to reach their plot so that they can immediately start irrigating before another farmer begins. Second, they must supervise while irrigating, otherwise another farmer diverting water from a top-end position can begin irrigating, leaving them insufficient water to complete their irrigation turn.

Excludability and Sanctioning Rules

Water users who have not paid the water fee cannot technically be excluded from water diversion from a canal. There is no graduated and credible sanctioning mechanism, as described by Ostrom (1992) in the design principles for enduring, self-governing, common-pool resource institutions. The water guard that worked in one of the case study villages carried no authority. Formal sanctioning power is generally lacking. Violators caught when committing a crime, such as destroying the barrage that distributes water among different canals, are not sanctioned.

Power Abuse in the Irrigation Sector

The aforementioned examples of actual water appropriation practice indicate that incongruity of formal and effective rules facilitates the exercise of power by actors and, in turn, is a result of that process. Asymmetric provision with power resources among the actors affects various decisions and actions in the irrigation sector (Theesfeld 2004a). Table 1 summarizes examples of transactions in the irrigation sector that are affected by power abuse. Knight’s Distributional Theory of Institutional Change (1992: 126) focuses on power asymmetries of actors as the main determinant of institutional change. This theory helps to explain how power asymmetries influence the capacity of strategic actors to determine the content of rules.

Table 1 : Transactions in the Irrigation Sector Affected by Power Abuse

Transactions in the irrigation sector

Actors involved

Specific decisions affected by power abuse

Renting in plots from the cooperative

Water users ↔ cooperative

Who gets plots at top-end position along the canal?

Starting an irrigation turn

Water users ↔ neighboring water users at the canal

Who irrigates first, and who violates the water appropriation rules?

Paying for irrigation water

Water users ↔ water guard

Who refrains from paying, or who pays less?

Releasing water into the canal

Water users ↔ water guard

When, i.e., favoring whom, the water is released?

Closing the barrage of a microdam

Fish farmers ↔ water users

For how long is water not released into the irrigation canal?

The empirical approach to derive at power resources combines several stages: (1)filtering and exploring relevant power resources, (2) revealing and validating these power resources, and (3) having them valued and ranked recurrently by the respective actors. Using statistical procedures, it is tested if there are differences in the assessment of the power resources between different subgroups. The empirical results show with statistical significance that the power resources and their ranking are robust against the impact of belonging to different territorial, social, and agricultural producer groups. The power resources hold the following mean ranks: (1) unrestricted access to information is assessed as most important followed by (2) personal relationship, (3) trustworthiness, (4) cash resources for bribing, (5) menace, and (6) physical power and violence (Theesfeld 2004b).

Policy Recommendation

It became evident that while ignoring local power structures on the ground, the pure implementation of new formal rules, such as the Water User Association Act enforced in March 2001, may again lead to an abuse of power by individuals seeking for personal benefits. Power asymmetries among the newly evolving diversified actors constellation at the canal have to be reduced in order to allow for equal access to water for different kinds of purposes. Effective rules are needed that allow a provision of water for a range of different, even competing, purposes.

The perception of power resources by local actors can serve as a starting point and hint to specific policy measures required to ensure equal resource access. An empowered advisory service could provide information to farmers and simultaneously enhance communication. A farmers’ newspaper could be an easily accessible medium for spreading information. The Ministry of Agriculture’s current website is a good starting point for publishing general statistical data and providing a discussion forum on law-making processes.

Outlook for Further Research

Further research based on this case study should address the following questions: Which information-spreading measures for the rural and agricultural sector are elaborated and supported by the new Bulgarian government elected in autumn 2005, and how do these measures actually trigger down to the local level? Do pre-accession programs of the European Union facilitate access to information of small-scale farmers? Do we find empirical evidence that such measures reduce the predominant power asymmetries among the actors at the local level? Does this induce an institutional change towards effective local rules that allow for equal and multipurpose water use of the disadvantaged groups?


Global Water Partnership (ed.) (2000). Final report on Water Pricing in Selected Accession Countries to the European Union: Current Policies and Trends. A report produced for the European Commission – DG Environment. (EU contract number B4-3040/99/130877/MAR/B2) Sofia: Water Clubs in Bulgaria.

Knight, Jack (1992). Institutions and Social Conflict. WashingtonUniversity: CambridgeUniversity Press.

Ostrom, Elinor (1992). Crafting Institutions for Self-Governance Irrigation Systems. San Francisco: Institute for Contemporary Studies Press.

Ostrom, Elinor; Gardner, Roy and Walker, James (1994). Rules, Games and Common-Pool Resources.Ann Arbor: University of Michigan Press.

Roland, Gérard (2000). Transition and Economic: Politics, Markets, and Firms. Cambridge, MA: The MIT Press.

Theesfeld, Insa (2004a). Constraints on Collective Action in a Transitional Economy: The Case of Bulgaria’s Irrigation Sector. World Development 32 (2), 251-271.

Theesfeld, Insa (2004b). Institutional Change in Bulgaria’s Irrigation Sector in Transition – Power Resources of Local Actors. Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaus e.V. “Perspektiven in der Landnutzung – Regionen, Landwirtschaften, Betriebe – Entscheidungsträger und Instrumente”. Band 39, Münster-Hiltrup: Landwirtschaftsverlag, 261-270.

[Anonymous].  Submitted.  South Africa: Water for productive livelihoods in South Africa's National Water Strategy.

Included in the strategy published in September 2004 is the following discussion on water for productive livelihoods:

'"The objectives of the [National Water] Act are, among other things, to meet the basic human needs of present and future generations, to promote equitable access to water, and to redress the results of past racial and gender discrimination. The Department is committed to achieving these objectives, and particularly to ensuring that water management strategies contribute to the eradication of poverty.

Although significant progress has been made in addressing the backlogs in water services, the provision of water to meet basic human needs does not make allowance for water for income-generating activities.

Similarly, whilst prioritising allocations of water for emerging farmers and small grower forestry schemes, and revitalising defunct irrigation schemes has the potential to provide livelihoods for many people in rural areas, these do not address the needs of the large numbers of people who require water for small-scale activities such as, for instance, brick making, rearing poultry and growing produce for local sale. The quantities of water required are relatively small - research in small villages indicates that livelihoods can be significantly enhanced by the availability of 50 to 100 litres per household day.

Although Schedule 1 provides for the use of small quantities of water without the need for further administrative authorisation it is restricted to domestic uses such as food gardens and domestic stock watering. As the Act currently stands water use under Schedule 1 supports subsistence activities but does not allow water to be used for commercial purposes.

The requirements for water for small-scale uses in rural areas will be quantified during compulsory licensing (see below), and the Department will investigate ways of making secure and cost effective supplies of water available without placing unnecessary administrative burdens on the users.

The requirements for water need not necessarily be met via piped supplies or using water abstracted from rivers. Rainwater harvesting from roofs or other hardened surfaces, using tanks, small check dams or catchpits can supplement more conventional sources of supply, and more use can be made of groundwater. Soil moisture can be retained on cultivated land and infiltration can be increased by contouring or constructing other micro water retaining structures, which have limited effects on water resources or downstream users.

The Department will work closely with other government agencies, particularly agricultural extension services, and in partnerships with non-governmental organisations and the private sector to explore possible options and ensure that appropriate interventions are implemented.''

Moriarty P, Butterworth J, van Koppen B.  2004.  Global: Beyond domestic:case studies on poverty and productive uses of water at the household level.

Is something missing from your work in water supply? Do individuals and communities that you work with use their water supplies for multiple purposes? Are you challenged by how to help the poor gain access to water (beyond 'traditional' domestic or field-scale irrigation needs) for activities that generate food and income like fruit and vegetable production, keeping livestock, brick-making and building, and a wide range of informal micro-enterprises? Do you search for ways to improve cost-recovery?

Beyond domestic contains:

  • evidence of how multi-purpose water supplies can help poor women and men to build sustainable livelihoods and fight poverty;
  • analysis of the key issues relating to productive uses of water at the household level;
  • details of practical experience on how to cater to the demand for productive water;
  • links to further information and contacts.

The book will inspire and support professionals seeking to move beyond sectoral boundaries in domestic or irrigation water supply, and contains many suggestions for an agenda of policy change, implementation and further research.

Beyond domestic is jointly published by IRC International Water and Sanitation Centre, the Natural Resources Institute (NRI) and the International Water Management Institute (IWMI).

The full publication may be downloaded from the IRC website. A hard copy of the publication is also available. Please contact IRC at publications@irc.nl